Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature.
نویسندگان
چکیده
Stroke is the third leading cause of death and a significant contributor of morbidity in the United States. In humans, suboptimal cerebral collateral circulation within the circle of Willis (CW) predisposes to ischemia and stroke risk in the setting of occlusive carotid artery disease. Unique genes or developmental pathways responsible for proper CW formation are unknown. Herein we characterize a mouse model lacking Notch signaling in vascular smooth muscle cells (vSMCs), in which the animals are intolerant to reduced cerebral blood flow. Remarkably, unilateral carotid artery ligation results in profound neurological sequelae and death. After carotid ligation, perfusion of the ipsilateral cerebral hemisphere was markedly diminished, suggesting an anastomotic deficiency within the CW. High-resolution microcomputed tomographic (micro-CT) imaging revealed profound defects in cerebrovascular patterning, including interruption of the CW and anatomic deformity of the cerebral arteries. These data identify a vSMC-autonomous function for Notch signaling in patterning and collateral formation within the cerebral arterial circulation. The data further implicate genetic or functional deficiencies in Notch signaling in the pathogenesis of anatomic derangements underlying cerebrovascular accidents.
منابع مشابه
Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells.
Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor (PDGF) signaling, a key determinant of VSMC biology, and show that PDGF receptor (PDGFR)-beta is a...
متن کاملVon Willebrand Factor Inhibits Mature Smooth Muscle Gene Expression through Impairment of Notch Signaling
Von Willebrand factor (vWF), a hemostatic protein normally synthesized and stored by endothelial cells and platelets, has been localized beyond the endothelium in vascular disease states. Previous studies have implicated potential non-hemostatic functions of vWF, but signaling mechanisms underlying its effects are currently undefined. We present evidence that vWF breaches the endothelium and is...
متن کاملNotch Regulation of Hematopoiesis, Endothelial Precursor Cells, and Blood Vessel Formation: Orchestrating the Vasculature
The development of the vascular system begins with the formation of hemangioblastic cells, hemangioblasts, which organize in blood islands in the yolk sac. The hemangioblasts differentiate into hematopoietic and angioblastic cells. Subsequently, the hematopoietic line will generate blood cells, whereas the angioblastic cells will give rise to vascular endothelial cells (ECs). In response to spe...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملSPOTLIGHT REVIEW Notch signalling in smooth muscle cells during development and disease
The Notch signalling pathway is a highly conserved cell–cell signalling mechanism that plays a central role in the development and maturation of most vertebrate organs. In vertebrates, Notch receptors, several ligands, and components of the downstream signalling machinery are expressed in the vessel. Over the past decade, numerous studies have highlighted the critical role of the Notch pathway ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 41 شماره
صفحات -
تاریخ انتشار 2007